Exercise 33

A particle moves in a velocity field $\mathbf{V}(x, y)=\left\langle x^{2}, x+y^{2}\right\rangle$. If it is at position $(2,1)$ at time $t=3$, estimate its location at time $t=3.01$.

Solution

The relationship between velocity and position in one dimension is

$$
v=\frac{d x}{d t} .
$$

For the vectors here, it becomes

$$
\mathbf{V}=\frac{d \mathbf{X}}{d t}
$$

We don't know what the position is, so we'll approximate the derivative by the difference quotient.

$$
\mathbf{V} \approx \frac{\mathbf{X}(t)-\mathbf{X}\left(t_{0}\right)}{t-t_{0}}
$$

Evaluate the velocity at the particle's initial position, $x=2$ and $y=1$, and plug in $t=3.01$ and $t_{0}=3$ on the right side.

$$
\begin{aligned}
&\left.\mathbf{V}\right|_{\substack{x=2 \\
y=1}} \approx \frac{\mathbf{X}(3.01)-\mathbf{X}(3)}{3.01-3} \\
&\langle 4,3\rangle \approx \frac{\mathbf{X}(3.01)-\langle 2,1\rangle}{0.01}
\end{aligned}
$$

Solve for $\mathbf{X}(3.01)$, the position vector of the particle at $t=3.01$.

$$
\langle 0.04,0.03\rangle+\langle 2,1\rangle \approx \mathbf{X}(3.01)
$$

Therefore,

$$
\mathbf{X}(3.01) \approx\langle 2.04,1.03\rangle
$$

